General Instructions:

- This questions paper contains 55 questions out of which 45 questions are to be attempted.
- (i)
- All questions carry equal marks. This question paper consists of three sections, Section A, Section B and Section C. (ii)
- Section A contains 25 questions. Attempt any 20 questions from questions no. 1 to 25. (iii)
- Section B contains 24 questions. Attempt any 20 questions from questions no. 26 to 49. (iv) (v)
- Section C contains 6 questions. Attempt any 5 questions from questions no. 50 to 55. (vi)
- The first 20 questions attempted in Section A and Section B and first 5 questions (vii) attempted in Section C by a candidate will be evaluated.
- There is only one correct option for every multiple choice question (MCQ). Marks will not (viii) be awarded for answering more than one option.
- There is no negative marking. (ix)

SECTION A

This section consists of 25 multiple choice questions with over all choice to attempt any 20 questions. In case more than desirable number of questions are attempted, only first 20 questions will be considered for evaluation.

- Which one of the following pairs will not form an ideal solution? 1.
 - Benzene and Toluene

n-Hexane and n-Heptane (b)

Ethanol and Acetone (c) .

- Bromoethane and Chloroethane (d)
- When NaCl is doped with SrCl2, there will be a formation of: 2.
 - Anion vacancies (a)

- Cation vacancies (b)
- Both cation and anion vacancies (c)
- (d) F-centre

The structure of Oleum is:

(b)
$$HO - \overset{O}{\overset{\parallel}{S}} - O - O - \overset{O}{\overset{\parallel}{S}} - OH$$

(c)
$$HO - \stackrel{O}{\underset{\parallel}{\mathbb{S}}} - OH$$

$$\begin{array}{cccc}
O & O \\
\parallel & & \parallel \\
O & -S - O - S - OH \\
\parallel & & \parallel \\
O & O
\end{array}$$

- The C O C bond angle in the ether molecule is: 4.
 - 111° (a)
- (b) 90°
- 120°
- (d) 180°
- Which of the following reagents will not convert ethyl alcohol into ethyl chloride? 5.
 - (a) PCl₅
- (b) NaCl
- SOCl,
- HCl/ZnCl2 (d)

15. Lucas reagent produces cloudiness immediately with:

(a)
$$CH_3 - C - CH_3$$
 OH

(b)
$$CH_3 - CH - CH_2 - CH_3$$

OH

(c)
$$CH_3 - CH_2 - CH_2 - OH$$

$$\begin{array}{ccc} \text{(d)} & \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{OH} \\ & & | \\ & \text{CH}_3 \end{array}$$

16. Which of the following is most reactive towards nucleophilic substitution reaction?

(b)
$$\begin{array}{c} C1 \\ NO_2 \end{array}$$

(c)
$$V_{NO_2}$$

$$(d) \qquad \bigvee_{NO_2}^{C1} NO_2$$

17. Pressure does not have any significant effect on solubility of solids in liquids because:

- (a) Solids are highly compressible
- (b) Liquids are highly compressible
- (c) Solubility of solid in liquid is directly proportional to partial pressure
- (d) Solids and liquids are highly incompressible

18. Main product in the following reaction is:

(c)
$$O_2N$$
 $CH - CH_3$ O_2N O_2N Br $CH_2 - CH_3$

19.	Which of the following forms strong $p\pi - p\pi$ bonding?						
13.	(1) CL (u) - 4	de					
20.	compounds?						
	(a) \mathbf{F}_2 (b) \mathbf{Cl}_2 (c) \mathbf{Br}_2 (d) \mathbf{I}_2						
21.	The functional unit that is repeated in a protein molecule is:						
	(a) An ester linkage (b) A glycosidic linkage						
	(c) A peptide minage						
22.	(L) Ita high polarizability						
	(d) Week dispersion forces between its ato	ms					
23.							
	(a) $(CH_3)_3C - I$ and CH_3CH_2OH						
	(b) $(CH_3)_3C - OH$ and CH_3CH_2I						
	(c) $(CH_3)_3C - I$ and CH_3CH_2I						
	(d) $(CH_3)_3C - OH$ and CH_3CH_2OH						
24.	The osmotic pressure of a solution increases if:						
	(a) The volume of the solution is increased(b) The number of solute molecules is increased						
	(c) Temperature is decreased (d) - Solution constant (R) is increased						
25.	Chlorine reacts with hot and concentrated NaOH to give:						
	(a) NaCl and NaClO (b) NaClO and NaClO ₃						
	(c) NaCl and NaClO $_4$ (d) NaCl and NaClO $_3$						
	SECTION B						
This	is section consists of 24 multiple choice questions with overall choice to attemp	ot any					
20 au	questions. In case more than desirable number of questions are attempted, only	y first					
20 qu 20 aue	questions will be considered for evaluation.						
26.	Vapour pressure of dilute aqueous solution of glucose is 750 mm Hg at 373 K. The	ne mole					
	fraction of solute is:						
	(a) $\frac{1}{7.6}$ (b) $\frac{1}{38}$ (c) $\frac{1}{76}$						
07 /	70						
27./	The bases that are common in both DNA and RNA are: (a) Adenine, Guanine and Cytosine (b) Adenine, Guanine and Thymine						
	(c) Adenine, Uracil and Cytosine (d) Guanine, Uracil and Thymi						
056/1/	S/1/4 Page 5	P.T.O					
STATE OF THE PARTY							

28.	A compound (X) with the molecular formula C_3H_8O can be oxidised to another compound (Y) whose molecular formula is $C_3H_6O_2$. The compound (X) may be:					
	(a) CH ₃ CH ₂ - O - O	CH ₃		$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_3 \\ \\ \operatorname{OH} \end{array}$		
	(c) CH ₃ - CH ₂ - CH	H_2 – OH	(d)	$\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CH}$	0	
29.	Which reagent is req	uired for one step of	conversio	n of benzene dia	zonium chloride to	
	bromobenzene? (a) PBr ₃	(b) HBr	(c)	$\mathrm{Cu}_2\mathrm{Br}_2$	(d) Br ₂	
30.	The number of lone pair of electrons on Xe in XeF ₂ , XeF ₄ and XeF ₆ compounds are					
	respectively:			2, 3 and 1		
	(a) 4, 3 and 2 (c) 3, 2 and 0		(d)	3, 2 and 1		
31.	Which form of sulphur shows paramagnetic behaviour?					
31.	(a) 9	(b) S.	(c)	S_2	(d) S ₆	
32.	An element with density 3 g cm ⁻³ forms a bcc lattice with edge length of 3×10^{-8} . The molar mass of the element is: $(N_A = 6 \times 10^{23} \text{ mol}^{-1})$					
	(a) 48.6 g mol^{-1}		(b) (d)	56 g mol ⁻¹		
	(c) 60 g mol^{-1}		(u)	50 g mor		
33.	In the following reaction: $CH_3 - Br \xrightarrow{Mg} X \xrightarrow{H_2O} Y$					
	'Y' will be:					
	(a) CH ₄	(b) CH ₃ MgBr	(c)	$\mathrm{CH_3}$ – OH	(d) $CH_3 - CH$	
34.	Which of the following has the greatest reducing power?					
	(a) HI	(b) HBr	(c)	HCl	(d) HF	
35.	The freezing point of $(K_f \text{ for water} = 1.86 \text{ I})$		of a non	-electrolyte in w	ater is :	
	(a) -0.372°C	(b) -1.86°C	(c)	+ 0·372°C	(d) + 1.86°C	
36. In a bcc structure, the packing efficiency is approximately :						
	(a) 58%	(b) 68%	(c)	32%	(d) 74%	

- 37. NO₂ gas dimerises because:
 - (a) It is acidic in nature
 - (b) It contains even number of valence electrons
 - (c) It contains odd number of valence electrons
 - (d) It is inert at room temperature
- 38. A compound forms hcp structure. The number of tetrahedral voids in 0.5 mol of it is:
 - (a) 6.022×10^{23}
 - (b) 9.033×10^{23}
 - (c) 3.011×10^{23}
 - (d) 5×10^{23}
- **39.** XeF_2 on reaction with PF_5 forms :
 - (a) $[XeF_3]^-[PF_4]^+$
 - (b) $[XeF_3]^+ [PF_4]^-$
 - (c) $[XeF]^+ [PF_6]^-$
 - (d) $[XeF_2]^+ [PF_5]^-$
- 40. Arrange the following compounds in decreasing order of their acidic character:

- (a) II > I > III
- (b) II > III > I
- (c) III > I > II
- $(d) \qquad I > II > III$
- Which of the following compounds undergoes racemisation on hydrolysis with aqueous KOH?
 - (a) $CH_3 CH_2 Br$

 $\begin{array}{ccc} \text{(b)} & \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{Br} \\ & & | \\ & \text{CH}_3 \end{array}$

 $\begin{array}{cc} & & C_2H_5\\ \mid & & \mid\\ (d) & CH_3-CH-Br \end{array}$

- Which of the following is not true? 42.
 - Fluorine exhibits only 1 oxidation state. (a)
 - Among halide ions, I_2 is the strongest oxidising agent.
 - F-F bond has lower bond dissociation enthalpy than Cl-Cl bond. (b) (c)
 - Fluorine forms only one oxoacid. (d)
- The IUPAC name of isobutyl bromide is: 43.
 - 1-bromo-3-methylbutane (a)
- 3-bromo-2-methylpropane (b)
- 1-bromo-2-methylpropane (d) 2-bromo-2-methylpropane
- (c) Chlorobenzene when treated with sodium in dry ether gives Diphenyl. It is called:
 - Wurtz reaction (a)

Fittig reaction (b)

Wurtz-Fittig reaction (c)

Friedel-Crafts reaction (d)

Question Nos. 45 to 49 are Assertion (A) and Reason (R) type questions. Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below.

- Both Assertion (A) and Reason (R) are true and Reason (R) is the correct (a) explanation of Assertion (A).
- Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct (b) explanation of Assertion (A).
- Assertion (A) is true, but Reason (R) is false. (c)
- Assertion (A) is false, but Reason (R) is true. (d)
- Assertion (A): NH3 is less basic than PH3. 45.

Reason (R): Nitrogen is more electronegative than phosphorus.

- Assertion (A): Osmotic pressure is a colligative property. 46.
 - Osmotic pressure of a solution depends on the molar concentration of Reason (R): solute at any temperature T.
- nucleophilic reactive towards less Assertion (A): Aryl halides are extremely 47. substitution reaction.
 - Halogen atom shows +I effect in Aryl halides. Reason (R):
- Assertion (A): Due to Frenkel defect there is no effect on density of solid. 48.

Ions shift from its normal site to an interstitial site in Frenkel defect. Reason (R):

- Assertion (A): Ozone is a powerful oxidising agent in comparison to O_2 . 49.
 - Ozone is thermodynamically stable with respect to oxygen. Reason (R):

056/1/4

SECTION C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5 questions. In case more than the desirable number of questions are attempted, only the first 5 questions will be considered for evaluation.

Match the following:

I

II

- i. Salicyl aldehyde
- A. Kolbe's reaction
- ii. o-nitrophenol
- B. Williamson's synthesis
- iii. Salicylic acid
- C. Intramolecular Hydrogen bonding
- iv. p-nitrophenol
- D. Reimer-Tiemann reaction
- v. Unsymmetrical ethers

Which of the following is the best matched option?

- (a) i-A,
- ii-C,
- iii-D,
 - iv-B

- (b) i-D,
- v-B,
- iii-C, iv-A
- (c) i-D,
- v-B,
- ii-C, iii-A
- (d) i-B,
- ii-C,
- iii-A, iv-D
- **51.** Which of the following analogies is correct:
 - (a) Oxygen: $d\pi p\pi$
- :: Sulphur : pπ-pπ
- (b) NH₃: Hydrogen bonding ::
- PH_3 : No Hydrogen bonding
- (c) Cl₂: More reactive
- :: ClF: Less reactive
- (d) Xe: No compounds
- :: He: Many compounds
- **52.** Complete the following analogy:
 - ZnS: A

- :: SiC: B
- (a) A: Molecular solid
- :: B: Ionic solid
- (b) A: Ionic solid
- :: B: Metallic solid
- (c) A: Metallic solid
- :: B: Covalent solid
- (d) A: Ionic solid
- : B: Covalent solid

Read the passage given below and answer the following question nos. 53-55. Carbohydrates are polyhydroxy aldehydes or ketones and are also called saccharides. Glucose is an example of monosaccharides. Glucose $(C_6H_{12}O_6)$ is an aldohexose and its open chain structure was assigned on the basis of many reactions as evidences like presence of carbonyl group, presence of straight chain, presence of five -OH groups, etc. Glucose is correctly named as D(+)Glucose. Glucose is found to exist in two different crystalline forms which are named as α and β . Despite having the aldehyde group, glucose does not give 2,4-DNP test.

Which of the following represents D(+)Glucose? 53.

CHO но — Н (b) CH₂OH

- Glucose on oxidation with HNO3 gives a dicarboxylic acid called saccharic acid. This 54. result validates the fact that Glucose possesses:
 - CHO group (a)
 - OH group (b)
 - (c) a straight chain
 - both CHO and CH2OH groups at the terminals of the chain (d)
- The pentaacetate of glucose does not react with H_2N OH indicating the absence of : 55.
 - OH group (a)

(b) - CHO group

- COOH group (c)

- CH₂OH group